SYNTHESE VON 1,3-DIMETALLACYCLOBUTANEN MIT DEM METHYLEN-DI-GRIGNARDREAGENS *

B.J.J. VAN DE HEISTEEG, G. SCHAT, O.S. AKKERMAN und F. BICKELHAUPT*

Scheikundig Laboratorium, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam (Niederlande) (Eingegangen den 27. Januar 1986)

Summary

An improved preparation of the methylene-di-Grignard reagent $CH_2(MgBr)_2$ (2) is described. 2 is applied as a synthon for the preparation of 1,3-dimetallacyclobutanes (1) in a two step sequence. First, two molar equivalents of 2 and one molar equivalent of a dichlorometallocene Cp_2MCl_2 (3) (M = Ti, Zr, Hf) are combined to form a 1,3-di-Grignard reagent $Cp_2M(CH_2MgBr)_2$ (4) which with a metal dichloride $L_2M'Cl_2$ ($L_2M' = Cp_2Ti$, Cp_2Zr , Cp_2Hf , Me_2Si , Me_2Ge , Me_2Sn) gives 1. The ¹H and ¹³C NMR spectra of 1 show interesting trends which are briefly discussed.

Zusammenfassung

Für das Methylen-di-Grignardreagens $CH_2(MgBr)_2$ (2) wird eine verbesserte Darstellungsmethode beschrieben. 2 dient als Synthon zur Darstellung von 1,3-Dimetallacyclobutanen (1) in einer zweistufigen Reaktionsfolge. Zunächst wird aus zwei Molequivalenten 2 und einem Molequivalent eines Dichlormetallocens Cp_2MCl_2 (3) (M = Ti, Zr, Hf) ein 1,3-Di-Grignardreagens $Cp_2M(CH_2MgBr)_2$ (4) dargestellt, das mit einem Metalldichlorid $L_2M'Cl_2$ ($L_2M' = Cp_2Ti$, Cp_2Zr , Cp_2Hf , Me_2Si , Me_2Ge , Me_2Sn) zu 1 umgesetzt wird. Die ¹H- und ¹³C-NMR-Spektren von 1 zeigen interessante Trends, deren Ursache diskutiert wird.

Einleitung

1,3-Dimetallacyclobutane (1), vor allem diejenigen der Übergangsmetalle, finden gegenwärtig in zunehmendem Masse Interesse. Verschiedene Vertreter dieser Stoffklasse wurden bereits synthetisiert oder als Zwischenstufen postuliert [1-17]. Das Interesse richtet sich dabei nicht nur auf Fragen der Struktur und Bindung, sondern auch auf ihre Rolle bei katalytischen Prozessen [2,3,5,6,17] sowie als Vorstufen [2,3]

^{*} Herrn Professor Dr. E. Weiss zu seinem 60. Geburtstag am 9.7.1986 in Verbundenheit gewidmet.

SCHEMA 1

von Metall-Carben-Komplexen (Metallaalkenen) [18-25], die ihrerseits also katalytische Zwischenstufen oder als Synthons in der organischen Synthese [21,26-31] von grosser Bedeutung sind. Darüber hinaus interessiert uns die Möglichkeit, bei zwei verschiedenen Metallen die vermutlich abgestufte Reaktivität der beiden verschiedenartigen Kohlenstoff-Metall-Bindungen zu untersuchen.

In der vorliegenden Mitteilung möchten wir eine neue Synthesemethode für 1 am Beispiel der Gruppe 4 (Ti, Zr, Hf) beschreiben, die vom Methylen-di-Grignardreagens $CH_2(MgBr)_2$ (2) [32] als Synthon ausgeht.

Wir hatten bereits gezeigt, dass 2 im Prinzip ein nützliches und vielseitiges Synthon zur Darstellung von 1 ist, wobei man je nach Wahl der Bedingungen symmetrische oder unsymmetrische Derivate von 1 erhalten kann. Die Umsetzung von 2 mit einem Derivat eines Metalldihalogenids 3 kann nämlich einstufig erfolgen (Schema 1); das Beispiel des 1,1,3,3-Tetramethyl-1,3-digermacyclobutans [32] zeigte, dass auf diese Weise symmetrische 1 bequem zugänglich sind. In zwei Kurzmitteilungen haben wir weiterhin illustriert, dass eine zweistufige Reaktionsfolge zu unsymmetrischen 1 führt, wenn man Dichlordicyclopentadienyltitan (3a) zunächst im Molverhältnis 1/2 mit 2 zu dem 1,3-Di-Grignardreagens 4a umsetzt; in der zweiten Stufe bildet 4a mit 3 neue Vertreter von 1, wobei das Metall in 3 aus der Gruppe 14 (Si, Ge, Sn) [33] oder 4 (Ti, Zr, Hf) [34] gewählt wurde (Schema 2).

Darstellung von Dimetallacyclobutanen

Das Reagens 2 wurde bisher [32,35] in ca. 50% Ausbeute aus Dibrommethan und ca. 1 prozentigem Magnesiumamalgam in Diethylether/Benzol (1/1) erhalten. Wie wir kürzlich entdeckten, kann 2 wesentlich besser dargestellt werden, wenn man die Reaktion in Diisopropylether also Lösungsmittel ausführt. Zwar wird hierbei der heterogene Charakter der Reaktion noch weiter verstärkt, da nicht nur das Edukt Amalgam, sondern auch das Produkt 2 sowie das Nebenprodukt Magnesiumbromid einen praktisch unlöslichen Niederschlag bilden. Erstaunlicherweise sind aber sowohl die Ausbeute an 2 (80-90%) wie auch seine Reinheit (weniger als 1% Methylmagnesiumbromid, ein sonst potentiell sehr störendes Nebenprodukt!) wesentlich besser als nach der klassischen Cainelli-Methode [35]. Verwendung von niedrigprozentigem Magnesiumamalgam bleibt allerdings leider auch in Diisopropylether notwendig, da die Umsetzung mit reinem Magnesium unvollständig verläuft. Das Reagens 2 wird aus dem Reaktionsgemisch in reiner Form gewonnen, indem man den Diisopropylether abdekantiert und den Rückstand mit Diethylether/Benzol (1/1) extrahiert. In diesem Lösungsmittelgemisch bleiben das Amalgam und das Magnesiumbromid als Festkörper zurück, während 2 mit der Stöchiometrie von CH₂(MgBr)₂ in Lösung geht; die Löslichkeit beträgt ungefähr 0.03 M. Die Ursache für die relative gute Löslichkeit in dem recht apolaren Gemisch ist nicht bekannt.

Das Schlüsselintermediär 4a erhält man, indem man unter Ausschluss von Luft und Feuchtigkeit bei -20° C 3a mit der Lösung von 2 molaren Equivalenten von 2 in Diethylether/Benzol (1/1) umsetzt. Hierbei setzt sich 4a als zähviskoser roter Niederschlag an der Wand ab; er wurde durch Umsetzung mit Trimethylgermaniumchlorid (5a) zum bekannten 6 [36] charakterisiert (Schema 2). Unter der Annahme einer quantitativen Reaktion in der letzten Stufe betrug die Ausbeute an 4a ca. 40%. Das sonst zur Ausbeutebestimmung von Grignardreagenzien sehr zuverlässige Trimethylzinnchlorid (5b) ist in diesem Fall nicht brauchbar, da es nicht nur mit der Kohlenstoff-Magnesium-Bindung, sondern (vor allem im Überschuss) auch mit der Titan-Kohlenstoff-Bindung reagiert [33,37].

Fügte man zum roten Niederschlag von 4a bei -20° C die Gruppe-14-Dichloride 3d-3f (Me₂MCl₂; M = Si, Ge, Sn) zu, so ging der rote Niederschlag in Lösung unter Bildung der braunroten Verbindungen 1d-1f [33]. Sie wurden durch Eindampfen des Reaktionsgemisches und Extraktion des Rückstandes mit Benzol gewonnen. Verbindung 1d wurde hierbei quantitativ und rein erhalten; sie war bereits früher auf anderem Wege dargestellt worden, und ihre Struktur ist durch Röntgenstrukturanalyse abgesichert [10]. Die Ausbeute an 1e (75%) und vor allem 1f (15%) war geringer, und nach den ¹H-NMR-Spektren waren diese Verbindungen durch 1a (Schema 2) verunreinigt. 1a verdankt seine Entstehung vermutlich der nicht völlig einzuhaltenden Stöchiometrie bei der Bildung von 4a. Die niedrigere Ausbeute vor allem bei 1f ist wohl auf zwei Ursachen zurückzuführen. Wie bereits oben ausgeführt, können Titan-Kohlenstoff-Bindungen (in diesem Falle von 1f) mit Zinn-Chlor-Bindungen (3f) reagieren, wodurch die Ausbeute vermindert wird. Ausserdem sind zinnhaltige Vierringe inherent instabil [38]; auch bereits gebildetes 1f zersetzt sich bei Raumtemperatur innerhalb von zwei Tagen.

Die Struktur von 1d-1f folgt aus den Massenspektren (siehe Exp. Teil) und den NMR-Spektren (siehe nächster Abschnitt), sowie aus der Umsetzung mit 5b zu 7d-7f (Schema 3) [39].

SCHEMA 3

Im Gegensatz zum Kohlenstoffanalogen 1g [40] sind 1d und 1e unter Ausschluss von Luft und Feuchtigkeit in Lösung bei Raumtemperatur unbegrenzt stabil. Den Unterschied erklären wir damit, dass 1g sich reversibel zum Titanaalken 8a und Isobuten spaltet [19]; eine entsprechende Spaltung tritt jedoch bei 1d-1f nicht auf, da sie zu den unstabilen Heteroalkenen 8d-8f führen würde [41]. Dagegen hat die Zersetzlichkeit von 1f, wie oben ausgeführt, eine andere, spezifische Ursache in der Spannung zinnhaltiger Vierringe.

Setzt man 4a nach Schema 2 mit den Dichloriden 3a-3c um, so erhält man 1a-1c, d.h. 1,3-Metallatitanacyclobutane der Gruppe 4. Die Reaktion und Isolierung erfolgte in ähnlicher Weise wie für 1d-1f beschrieben; zur Extraktion wurde Toluol statt Benzol verwendet, und die Isolierung gelang durch Kristallisation aus der Toluollösung bei -80° C. Hierbei wurde 1a als tief purpurrote Kristalle [8] erhalten; 1b als braune und 1c als hellbräunliche Kristalle. Die Charakterisierung erfolgte durch Elementanalyse und NMR-Spektroskopie (siehe nächster Abschnitt). Leider waren die bisher erhaltenen Kristalle trotz einwandfreier makroskopischer Erscheinungsform bei der Röntgenanalyse nicht homogen.

Die Tragfähigkeit der neuen Methode konnten wir auch in der Anwendung auf die höheren Vertreter der Gruppe 4 beweisen. Die Reaktion von zwei Molequivalenten 2 mit Cp_2ZrCl_2 (3b) bzw. Cp_2HfCl_2 (3c) führte in Analogie zur Bildung von 4a (Schema 2 und 4) zu den 1,3-Di-Grignardverbindungen 4b bzw. 4c (Schema 4), welche in situ mit 3b bzw. 3c umgesetzt wurden; dies führte zu den neuen Verbindungen 1h-1j. Die Ausbeuten waren allerdings niedriger als in der Titan-Reihe, vermutlich wegen der geringeren Löslichkeit der Zirkon- und Hafniumverbindung, vielleicht auch wegen ihres geringen Elektronnegativitätsunterschiedes zum Magnesium, was vor allem bei der im Vergleich zu Mono-Grignardverbindungen deutlich verringerten Reaktivität [32] von 2 eine wichtige Rolle spielen dürfte. Die Isolierung der drei letzten Verbindungen bereitete einige Schwierigkeiten. Erstens liessen sie sich nach Eindampfen aus dem Reaktionsgemisch nicht mit Benzol extrahieren, so dass 1h und 1i mit Dioxan, 1j mit THF extrahiert werden mussten. Da die reinen Verbindungen sich wohl in Benzol lösen, muss man annehmen, dass sie im Reaktionsgemisch durch Komplexbildung mit Magnesiumsalzen festgehalten

SCHEMA 4

werden. Zweitens wurden 1i und 1j nur im Gemisch miteinander und mit 1h erhalten, wobei allerdings die gewünschte Verbindung stets das Hauptprodukt (50-60%) war. Ursache ist ausser der Anwesenheit von bis zu 10% 3b in 3c (siehe Exp. Teil) auch die unterschiedliche Reaktionsgeschwindigkeit mit 2, die offenbar zu einer Fraktionierung bei der Bildung von Intermediären führt; dies wird durch die Heterogenität des Systems (Niederschlagsbildung) noch verstärkt. Verbindung 1h bildet orangerote, 1i gelbe und 1j farblose Kristalle; im letzten Fall rührt die geringe Farbe wahrscheinlich von 1h und 1i her. Zu 1h ist noch zu bemerken, dass es auf Grund des $\delta(^{13}C)$ -Wertes der Methylengruppe vermutlich mit dem seinerzeit nicht charakterisierten Zersetzungsprodukt des Zirconaalken-Komplexes Cp₂Zr-(=CH₂)PPh₂Me [4] identisch ist.

¹H und ¹³C NMR Spektren

Die NMR-Spektren wurden in Perdeuterobenzol gemessen und sind in den Tabellen 1 (¹H-NMR) und 2 (¹³C-NMR) zusammengefasst. Aus den Tabellen ergeben sich einige überraschende Trends, die wir im Folgenden kurz diskutieren möchten, obwohl sie bei dem heutigen Kenntnisstand noch nicht in allen Einzelheiten gedeutet werden können.

Verbindung			CH ₂ ^a	Cp(M) ^a	L		
	м	<u>M'</u>			$\overline{\operatorname{Cp}(\mathbf{M}')^{a}}$	CH ₃ ^a	
1a ^b	Ti	Ti	8.72	6.23	6.23	_	
1b	Ti	Zr	7.63	6.22	6.20	-	
lc	Ti	Hf	6.26	6.25	6.15	_	
1h	Zr	Zr	6.42	6.22	6.22	-	
1i	Zr	Hſ	5.16	6.22	6.12	_	
1j	Hf	Hf	3.95	6.14	6.14	_	
1d	Ti	Si	2.52	5.57	_	0.13	
1e	Ti	Ge	2.75	5.43	_	0.26	
1f	Ti	Sn	2.93	5.39	-	0.19	
1g ʻ	Ti	С	2.46	5.43	_	1.01	
1k °	Zr	С	1.87	5.57	_	1.19	
11 °	Hf	С	1.81	5.53	-	1.28	

TABELLE 1

¹H-NMR-SPEKTREN VON 1,3-DIMETALLACYCLOBUTANEN $Cp_2MCH_2M'(L_2)CH_2$ (1)

^a δ in ppm; 90 MHz in C₆D₆; alle Signale sind Singuletts. ^b Vgl. Ref. 8. ^c Nach Ref. 40; 250 MHz in Toluol-d₈ bei - 30°C.

Verbindung			CH ₂ ^a	Cp(M) ^a	L	
	M	M'			Cp(M') ^{<i>a</i>}	CH ₃ ^a
la ^b	Ti	Ti	235.8[t; 125.2]	112.1[d; 172]	112.1[d; 172]	_
lb	Ti	Zr	205.7[t; 122.7]	111.7[d; 172]	110.1[d; 171]	-
lc	Ti	Hſ	193.3[t; 120.9]	112.6[d; 172]	109.3[d; 172]	-
lh	Zr	Zr	173.1[t; 119.3]	109.7[d; 170]	109.7[d; 170]	-
li	Zr	Ηſ	161.5[t; 118.2]	110.2[d; 171]	108.9[d; 171]	
lj	Hſ	Hf	149.6[t; 117.5]	109.5[d; 171]	109.5[d; 171]	-
d	Ti	Si	70.6[t; 130]	110.2[d; 173]	~	1.0[q; 119]
le	Ti	Ge	71.5[t; 134]	108.6[d; 174]	-	-0.2[q; 125]
lf ^c	Ti	Sn	?	?	-	?
lg ^d	Ti	С	83.4[t; 137]	110.8[d; 172]	_	38.1[q; 124]
lk ^d	Zr	С	66.4[t; 133]	109.2[d; 171]	_	40.2[q; 125
fi ^d	Hf	С	71.7[t; 130]	108.9[d; 173]	-	39.7[q; 124]

¹³C-NMR-SPEKTREN VON 1,3-DIMETALLACYCLOBUTANEN Cp₂MCH₂M'(L₂)CH₂ (

^a δ in ppm [Multiplizität; ¹J(CH) in Hz]; 62.89 MHz in C₆D₆. ^b Vgl. Ref. 8. ^c Nicht gemessen. ^d Nach Ref. 40; 250 MHz in Toluol-d₈ bei - 30°C.

Zunächst fallen die extremen Tieffeldverschiebungen für die Methylengruppen von **1a** auf, die a priori von der Struktur her völlig unerwartet sind, da es sich um zweifach metallierte Methylengruppen handelt, für die man aus Elektronegativitätserwägungen eher eine Hochfeldverschiebung im Vergleich zu den Werten des entsprechenden Titanacyclobutans **1g** oder der verwandten Verbindungen **1d–1f** (siehe Tabellen) erwarten würde. Tatsächlich fallen die Werte für **1a** eher in einen Bereich, den man für näherungsweise sp^2 -hybridisierte CH₂-Gruppen z.B. in den Metallaalkenen [6] bzw. ihren Komplexen [1,4,24,42] findet.

Ersetzt man in der Serie **1a-1c**, **1h-1j** das Titan durch die schwereren Metalle Zirkon und Hafnium, so beobachtet man einen kontinuierlichen Aufwärtstrend der chemischen Verschiebungen. In den Protonenspektren ist dieser Trend am regelmässigsten mit einer Hochfeldverschiebung von $\Delta \delta = 1.2 \pm 0.1$ ppm bei Ersatz eines Metalls durch das jeweils schwerere, so dass z.B. der Wert der Titan-Hafnium-Verbindung **1c** (δ 6.26 ppm) fast identisch ist mit dem der Zirkon-Zirkon-Verbindung **1h** (δ 6.42 ppm). Bei den Kohlenstoffspektren muss man unterscheiden zwischen dem Übergang Titan-Zirkon ($\Delta \delta$ 31.5 ± 1 ppm) und dem Übergang Zirkon-Hafnium ($\Delta \delta$ 12.0 ± 0.4 ppm), die aber jeweils auch eine gute Additivität zeigen.

Die Deutung chemischer Verschiebungen ist im allgemeinen schwierig, da sie die Resultante verschiedener Effekte sein können, entsprechend der Gleichung 1 [43].

$$\sigma = \sigma_d + \sigma_p; \ \sigma_p = C/\Delta E \tag{1}$$

Für den diamagnetischen Term σ_d würde man auf Grund der Elektronegativitätsunterschiede der drei Metalle zwar qualitativ den beobachteten Trend erwarten, doch sind diese Unterschiede quantitativ zu klein (vor allem zwischen Zirkon and Hafnium [44]). Dagegen gibt es verschiedene Beispiele in der Literatur, aus denen der grosse Einfluss des paramagnetischen Terms σ_p hervorgeht [43,45]. Im Lichte dieser Untersuchungen darf man annehmen, dass in der Reihe Titan-Zirkon-Hafnium der Abstand zwischen HOMO (im wesentlichen zusammengesetzt aus Beiträgen

TABELLE 2

des Liganden) und LUMO (im wesentlichen Metall-d-Orbitale) grösser wird, so dass die feldinduzierte Anregung (ΔE in Gleichung 1) und damit die paramagnetische Entschirmung abnehmen. Im Vergleich zu den einfachen Metallacvclobutanen 1d-1f. 1g, 1k und 1l wirkt sich die Substitution der Methylengruppe durch zwei Übergangsmetalle erwartungsgemäss stärker aus. Erstaunlich bleibt allerdings, dass dieser Effekt sich auch in den Protonenspektren so deutlich äussert, da man im allgemeinen annimmt [43], dass er nur bei Kohlenstoff-13 eine wichtige Rolle spielt. In diesem Zusammenhang muss man auch darauf hinweisen, dass in den Metallacyclobutanen 1g, 1k und 1l die $\delta({}^{1}H)$ -Werte zwar monoton steigen, die $\delta({}^{13}C)$ -Werte dagegen bei 1k (Zr) einen Knickpunkt zeigen. Offensichtlich ist dies auf die Wirkung wiederum anderer Faktoren zurückzuführen. Wir vermuten, dass ausser Anisotropieeffekten der Metalle und der Cyclopentadienyl-Liganden auch die Hybridisierung des Methylen-Kohlenstoffatoms eine Rolle spielt. Da Röntgenstrukturanalysen bisher leider fehlen, kann man zwar keine absolut sicheren Aussagen machen, aber aus den bisher bekannten Kristallstrukturen [10,11,46] und aus den Kopplungskonstanten ¹J(CH) der Methylengruppen sind doch gewisse Einsichten abzuleiten.

Die verfügbaren Kristallstrukturen stimmen hierin überein, dass die zentralen Vierringe im wesentlichen eben sind und am Übergangsmetall einen recht kleinen Bindungswinkel CH₂-M-CH₂ von ca. 75-84° zeigen; hierdurch wird die Spannung bei den übrigen Ringatomen verringert. Vom Titan zum Zirkon nimmt der Bindungswinkel ab (vgl. die entsprechenden Metallasilacyclobutane) [10,11], was zu einer Zunahme des M-C-M' Winkels und folglich zu einer Abnahme der CH-Kopplung führt. Bei den Dimetallacyclobutanen (1a-1c, 1h-1j) beobachten wir eine gleichmässige Abnahme der CH-Kopplungskonstanten und dürfen daher auf eine Zunahme des M-C-M' Winkels und folglich auf eine Abnahme des C-M-C Winkels vom Titan zum Hafnium schliessen. Denselben Trend finden wir für die Metallacyclobutane (Tabelle 2: 1g, J 137 Hz; 1k, J 133 Hz; 1l, J 130 Hz). Einerseits ist wohl die grössere "Weichheit" des schweren Metalls hierfür verantwortlich; andererzeits zeigt der Trend der chemischen Verschiebungen des Methylenkohlenstoffs, dass der HOMO-LUMO-Abstand beim leichteren Metall empfindlicher auf die Verkleinerung des C-M-C Winkels reagiert. Wir versuchen zur Zeit, diese qualitative Betrachtungen durch eine theoretische Analyse zu unterbauen.

Experimenteller Teil

Lösungsmittel wurden vor Gebrauch von einer Natrium-Kalium-Legierung destilliert. Die Dichlormetallocene **3a–3c** wurden von der Firma Ventron (Karlsruhe) bezogen und direckt verwendet; das Dichlorhafnocen (**3c**) enthielt wechselnde Mengen des Zirkonanalogen **3b** (8–10%); der Anteil der Zirkonverunreinigung änderte sich bei manchen Reaktionen durch "Fraktionierung". Alle organometallischen Reaktionen wurden in einem abgeschmolzenen und evakuierten Glassystem [47] ausgeführt. ¹H-NMR-Spektren wurden auf einem Bruker WH-90 Spektrometer bei 90 MHz in C₆D₆ gemessen, ¹³C-NMR-Spektren auf einem WM-250 Spektrometer bei 62.89 MHz in C₆D₆. Massenspektren wurden auf einem Varian MAT CH5 DF Massenspektrometer mit einem speziell konstruierten Direkteinlasssystem gemessen.

Methylendimagnesiumdibromid (2)

In einem geschlossenen Glaskolben wurden Dibrommethan (3.75 g, 21.5 mMol), Magnesiumamalgam (aus 40 ml Quecksilber und 5.4 g Magnesium) und Diisopropylether (200 ml) bei Raumtemperatur über Nacht magnetisch gerürht. Es bildete sich ein schwarzgrauer Niederschlag, von dem die organische Phase abdekantiert wurde. Nach dem Trocknen im Vakuum wurde der Niederschlag mit 400 ml eines Diethylether/Benzol-Gemisches (1/1) versetzt und über Nacht gerührt. Hierbei ging der Niederschlag grossenteils in Lösung. Nach dem Absitzen wurde der klaren Lösung eine Probe entnommen und nach Hydrolyse (H₂O) mit 0.1 M HCl und Complexon (EDTA) titriert [47]. Die Ausbeute an 1 betrug 80% (bezogen auf Dibrommethan); das Verhältnis $1/MgBr_2$ betrug 96/4.

Bis(cyclopentadienyl)bis(brommagnesiomethyl)titan (4a)

In einem evakuierten und abgeschmolzenen Glassgefäss wurden 2 (ca. 1.5 mMol in 50 ml Diethylether/Benzol 1/1) und Dichlortitanocen (**3a**) (ca. 0.75 mMol) eine Stunde gerührt, wobei sich an der Wand ein roter, viskoser Niederschlag absetzte. Eine Probe wurden entnommen, zur Trockne eingedampft, und der Rückstand in THF- d_8 gelöst. Das ¹H-NMR-Spektrum von **4a** zeigt ein Signal bei δ – 3.44 ppm (s, CH₂). Zur Ausbeutebestimmung und Charakterisierung wurde das Reaktionsgemisch mit einem Überschuss Trimethylchlorgerman versetzt und eine Stunde bei Raumtemperatur gerührt. Dann wurde zur Trockne eingedampft und der Rückstand mit Benzol extrahiert; Bis(cyclopentadienyl)bis(trimethylgermylmethyl)titan (**6**) ging mit rotbrauner Farbe in Lösung (40% Ausbeute, mit Cyclopentan als internem Standard durch ¹H-NMR bestimmt). Die spektroskopischen Daten von **6** stimmten, soweit publiziert, mit denen eines auf anderem Wege dargestellten Präparates [36] überein (C₆D₆); ¹H-NMR: δ 5.79 (s, 10H, Cp), 1.17 (s, 4H, CH₂), 0.17 ppm (s, 18H, Me); ¹³C-NMR: δ 108.8 (d, ¹J(CH) 172 Hz, Cp). 65 (t, ¹J(CH) 118 Hz, CH₂), 3.0 (q, ¹J(CH) 122 Hz, Me).

<u>1,1-Dimethyl-3,3-bis(cyclopentadienyl)-1,3-metallatitanacyclobutane</u> $(Me_2MCH_2Ti-(Cp_2)CH_2; Id: M = Si; Ie: M = Ge; If: M = Sn)$

Verbindung 4a wurde wie oben beschrieben dargestellt, bei -20° C mit Me₂MCl₂ (3d: M = Si; 3e: M = Ge; 3f: M = Sn) (0.39 mMol) versetzt und unter Rühren auf Raumtemperatur erwärmt. Es bildete sich ein farbloser Niederschlag (MgBrCl) sowie eine braunrote Lösung von 1d (8 h), 1e (2 h) bzw. 1f (2 h). Nach der angegebenen Zeit wurde das Reaktionsgemisch zur Trockne eingedampft und der Rückstand mit Benzol (10 ml) extrahiert; die Benzolextrakte wurden zur Trockne eingedampft und der Rückstand durch NMR-Spektroskopie (C_6D_6 , Cyclopentan als interner Standard) analysiert. Bei Annahme einer 40 prozentigen Ausbeute an 4a (siehe oben) betrug die Ausbeute an 1d 100%, 1e 75% bzw. 1f 15%.

Massenspektren m/z (relative Intensität bezogen auf $Cp_2^{48}Ti^{+} = 100\%$: **1d**: 264(31) **1d**⁺⁺, 191(4) Cp_2TiCH^+ , 178(100) Cp_2Ti^+ , 113(23) $CpTi^+$; **1e**: 310(27) **1e**⁺⁺ (mit Isotopenmuster), 191(31) Cp_2TiCH^+ , 178 (100) Cp_2Ti^{++} , 113(36) $CpTi^+$. HRMS: **1d** gef. 264.0803. $C_{14}H_{20}$ ⁴⁸Ti²⁸Si ber. 264.0814; **1e** gef. 310.0250. $C_{14}H_{20}$ ⁴⁸Ti⁷⁴Ge, ber. 310.0260.

1,1,3,3-Tetra(cyclopentadienyl)-1,3-titanametallacyclobutane $(Cp_2TiCH_2M(Cp_2)CH_2;$ 1a: M = Ti; 1b: M = Zr; 1c: M = Hf)

Verbindung 4a wurde wie oben beschrieben dargestellt, bei -20° C mit Cp₂MCl₂

(3a: M = Ti; 3b: M = Zr; 3c: M = Hf) versetzt und unter Rühren auf Raumtemperatur erwärmt. Es bildete sich ein farbloser Niederschlag (MgBrCl) sowie eine gefärbte Lösung nach der folgenden Zeit: 1a (purpurrot; 2 h), 1b (braunrot; 3 h), 1c (bräunlich; 5 h). Danach wurde das Reaktionsgemisch zur Trockne eingedampft und der Rückstand mit Toluol (10 ml) extrahiert; bei Abkühlen der Toluolextrakte auf - 80°C bildeten sich purpurrote (1a), braune (1b) bzw. hellbraune Kristalle (1c). Die isolierten Ausbeuten betrugen 33, 31 bzw. 36% bezogen auf Cp₂TiCl₂, oder 82, 77, bzw. 90% bezogen auf die geschätzte Ausbeute an 4a (siehe dort).

1a: Auf Grund der spektroskopischen Daten identisch mit dem in der Literatur beschriebenen Präparat [8]. 1b: Gef. C, 61.93. H, 5.82. $C_{22}H_{24}TiZr(427.55)$ ber. C, 61.80; H, 5.66% 1c: Gef. C, 50.74; H, 4.78. $C_{22}H_{24}TiHf(514.82)$ ber. C, 51.33; H, 4.70%.

$\frac{1,1,3,3}{(Cp)_2CH_2}$, **1h**: M = Zr; **1i**: M = Hf) (Cp₂ZrCH₂M-

In einem evakuierten und abgeschlossenen Glasgefäss wurden 2 (1.55 mMol in 50 ml Diethylether/Benzol 1/1) und Dichlorzirconocen (**3b**) (0.227, 0.78 mMol) bei -20° C 5 h gerührt; hierbei bildete sich ein hellgelber, viskoser Niederschlag. Nach Zugabe von **3b** bzw. **3c** (0.39 mMol) wurde unter Rühren auf Raumtemperatur erwärmt. Es bildete sich eine Lösung von 1; im Fall von 1h nach 4 h (orangerot), im Fall von 1i nach 6 h (gelb). Das Reaktionsgemisch wurde zur Trockne eingedampft. Der Rückstand wurde mit Benzol (10 ml) gewaschen (1i) und dann mit Dioxan (10 ml) extrahiert (1h und 1i) und filtriert. Das Filtrat ergab beim Eindampfen reines orangerotes 1h. (33% Ausbeute bezogen auf 2, bestimmt durch ¹H-NMR-Analyse der CH₂-Gruppen mit Cyclopentan als internem Standard); für 1i wurde, offenbar durch Fraktionierung des ursprünglichen Zr/Hf-Verhältnisses (siehe oben) ein Gemisch aus 1h/1i/1j (35/53/12) erhalten.

1,1,3,3-Tetra(cyclopentadienyl)-1,3-hafnametallacyclobutane $(Cp_2HfCH_2M(Cp_2)CH_2;$ 1i: M = Zr; 1j: M = Hf)

In einem evakuierten und abgeschmolzenen Glasgefäss wurden 2 (1.55 mMol in 50 ml Diethylether/Benzol 1/1) und Dichlorhafnocen (3c) (0.260 g, 0.78 mMol) bei -20° C 12 h gerührt; hierbei bildete sich ein farbloser, viskoser Niederschlag. Nach Zugabe von 3b bzw. 3c (0.39 mMol) wurde unter Rühren auf Raumtemperatur erwärmt. Nach 6 h hatte sich ein farbloser Niederschlag (MgBrCl) und eine gelbe (1i) bzw. hellgelbe (1j) Lösung gebildet. Das Reaktionsgemisch von 1i wurde zur Trockne eingedampft. Der Rückstand wurde mit Benzol (10 ml) gewaschen und dann mit Dioxan (10 ml) extrahiert und filtriert. Das Filtrat ergab beim Eindampfen ein gelbes Gemisch aus 1h/1i/1j (12/63/25) (siehe voriges Experiment; Gesamtausbeute 17% bezogen auf 2, bestimmt durch ¹H-NMR-Analyse der CH₂-Gruppen mit Cyclopentan als internem Standard). Bei der analogen Aufarbeitung des Reaktionsgemisches von 1j wurde die Extraktion mit THF statt Dioxan ausgeführt und ergab ein Gemisch aus 1h/1i/1j (25/25/50; Gesamtausbeute 7% bezogen auf 2).

Dank

Wir danken Dr. F.J.J. de Kanter für seine Hilfe bei der Aufnahme der ¹³C-NMR-Spektren, Herrn E.A.I.M. Evers für die Aufnahme der Massenspektren. Herrn L. Vroom für die Anpassung der NMR-Röhrchen zum Anschmelzen an das Hochvakuumsystem, Herrn A.F. Hamminga für die Elementanalysen und Prof. Dr.

B. Wrackmever für wertvolle Hinweise bezüglich der Spektren.

Literatur

- 1 F.W. Hartner, Jr., J. Schwartz und S.M. Clift, J. Am. Chem. Soc., 105 (1983) 640.
- 2 J.H. Merrifield, G.-Y. Lin, W.A. Kiel und J.A. Gladysz, J. Am. Chem. Soc., 105 (1983) 5811.
- 3 J. Vollhardt, H.-J. Gais und K.L. Lukas, Angew. Chem., 97 (1985) 695.
- 4 J. Schwartz und K.I. Gell, J. Organomet. Chem., 184 (1980) C1.
- 5 R.R. Schrock, Acc. Chem. Res., 12 (1979) 98.
- 6 R.R. Schrock und P.R. Sharp, J. Am. Chem. Soc., 100 (1978) 2389.
- 7 R. Wehrmann, H. Klusik und A. Berndt, Angew. Chem., 96 (1984) 810.
- 8 K.C. Ott und R.H. Grubbs, J. Am. Chem. Soc., 103 (1981) 5922.
- 9 H.J. Padberg und B. Bergerhoff, Angew. Chem., 88 (1976) 60.
- 10 W.R. Tikkanen, J.Z. Liu, J.W. Egan, Jr. und J.L. Petersen, Organometallics, 3 (1984) 825.
- 11 W.R. Tikkanen, J.W. Egan, Jr. und J.L. Petersen, Organometallics, 3 (1984) 1646.
- 12 H. Sakurai und H. Umino, J. Organomet. Chem., 142 (1977) C49.
- 13 J.W. Suggs, M.J. Wovkulich und K.S. Lee, J. Am. Chem. Soc., 107 (1985) 5546.
- 14 R.A. Andersen, R.A. Jones, G. Wilkinson, M.B. Hursthouse und K.M.A. Malik, J. Chem. Soc., Chem. Comm., (1977) 283.
- 15 M.B. Hursthouse, R.A. Jones, K.M.A. Malik und G. Wilkinson, J. Am. Chem. Soc., 101 (1979) 4128.
- 16 J.W. Bruno, T.J. Marks und V.W. Day, J. Am. Chem. Soc., 104 (1982) 7357.
- 17 C. Masters, C. van der Woude und J.A. van Doorn, J. Am. Chem. Soc., 101 (1979) 1633.
- 18 D.A. Straus und R.H. Grubbs, Organometallics, 1 (1982) 1658.
- 19 J.B. Lee, K.C. Ott und R.H. Grubbs, J. Am. Chem. Soc., 104 (1982) 7491.
- 20 K.C. Ott, J.B. Lee und R.H. Grubbs, J. Am. Chem. Soc., 104 (1982) 2942.
- 21 J.R. Stille und R.H. Grubbs, J. Am. Chem. Soc., 105 (1983) 1664.
- 22 F.N. Tebbe, G.W. Parshall und D.W. Ovenall, J. Am. Chem. Soc., 101 (1979) 5074.
- 23 P.J. Krusic und F.N. Tebbe, Inorg. Chem., 21 (1982) 2900.
- 24 J.J. Eisch und A. Piotrowski, Tetrahedron Lett., 24 (1983) 2043.
- 25 J.W. Bruin, G. Schat, O.S. Akkerman und F. Bickelhaupt, Tetrahedron Lett., 24 (1983) 3935.
- 26 S.L. Buchwald und R.H. Grubbs, J. Am. Chem. Soc., 105 (1983) 5490.
- 27 L. Clawson, S.L. Buchwald und R.H. Grubbs, Tetrahedron Lett., 25 (1984) 5733.
- 28 S.L. Buchwald, E.V. Anslyn und R.H. Grubbs, J. Am. Chem. Soc., 107 (1985) 1766.
- 29 K.A. Brown-Wensley, S.L. Buchwald, L. Cannizzo, L. Clawson, S. Ho, D. Meinhardt, J.R. Stille, D. Straus und R.H. Grubbs, Pure and Appl. Chem., 55 (1983) 1733.
- 30 R.H. Grubbs, Prog. Inorg. Chem., 24 (1977) 1.
- 31 K. Weiss in K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert, K. Weiss (Hrsg.), Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, 1983, p. 228.
- 32 J.W. Bruin, G. Schat, O.S. Akkerman und F. Bickelhaupt, J. Organomet. Chem., 288 (1985) 13.
- 33 B.J.J. van de Heisteeg, G. Schat, O.S. Akkerman und F. Bickelhaupt, Tetrahedron Lett., 25 (1984) 5191.
- 34 B.J.J. van de Heisteeg, G. Schat, O.S. Akkerman und F. Bickelhaupt, Organometallics, 4 (1985) 1141.
- 35 F. Bertini, P. Grasselli, G. Zubiani und G. Cainelli, Tetrahedron, 26 (1970) 1281.
- 36 M.R. Collier, M.F. Lappert und R. Pearce, J. Chem. Soc., Dalton Trans., (1973) 445.
- 37 C. Beermann und H. Bestian, Angew. Chem., 71 (1959) 618.
- 38 J.W.F.L. Seetz, G. Schat, O.S. Akkerman und F. Bickelhaupt, J. Am. Chem. Soc., 105 (1983) 3336.
- 39 B.J.J. van de Heisteeg, unveröffentlichte Ergebnisse.
- 40 J.W.F.L. Seetz, G. Schat, O.S. Akkerman und F. Bickelhaupt, Angew. Chem., 95 (1983) 242.
- 41 L.E. Guselnikov und N.S. Nametkin, Chem. Rev., 79 (1979) 529.
- 42 F.N. Tebbe, G.W. Parshall und G.S. Reddy, J. Am. Chem. Soc., 100 (1978) 3611.
- 43 R.F. Fenske in B.L. Shapiro, (Hrsg.), Organometallic Compounds: Synthesis, Structure, and Theory, Texas 1983, 305.
- 44 L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, 3rd edit., 1960.
- 45 A. Sebald, P. Fritz und B. Wrackmeyer, Spectrochim. Acta A, 41 (1985) 1405.
- 46 J.B. Lee, G.J. Gajda, W.P. Schaefer, T.R. Howard, T. Ikariya, D.A. Straus und R.H. Grubbs, J. Am. Chem. Soc., 103 (1981) 7358.
- 47 A.D. Vreugdenhil und C. Blomberg, Recl. Trav. Chim. Pays-Bas, 82 (1963) 453, 461.